
Mustacchio 1

💈
Mustacchio

Platform THM

Operating System Linux

Tags RSA XXE web-app

General-Information
Table of Contents

Scanning/Enumeration

Login Credentials

Admin Portal

XML Injection (XXE)

🚩 User Flag🚩

🚩 Root Flag🚩

Passwords

admin : bulldog19 | http://$IP:8765

barry : urieljames | SSH

Room Link

https://tryhackme.com/room/mustacchio

Scanning/Enumeration

https://www.notion.so/7a38323169974b90bb03a0523a461bbe#23e45b1b9ebb453aae357f0beb4d3561
https://www.notion.so/7a38323169974b90bb03a0523a461bbe#c6ce67fc627548b687a42c4a10fc35e2
https://www.notion.so/7a38323169974b90bb03a0523a461bbe#83000414055445519e60f8157924e661
https://www.notion.so/7a38323169974b90bb03a0523a461bbe#9ed1c93565094d21851800da29e4cac3
https://www.notion.so/7a38323169974b90bb03a0523a461bbe#1ae349bb6f0e4d72b180bb0be8c255b1
https://www.notion.so/7a38323169974b90bb03a0523a461bbe#19e7e895347f462cadcac2ab806caae6
https://tryhackme.com/room/mustacchio

Mustacchio 2

Looking at the results from the nmap scan I see that the standard Linux style box
ports are open, being port 22 and port 80. Looking at the output from port 80 I see that
there is a robots.txt page although it doesn’t look to be of much usage.

Checking the nmap -vuln scan I see that there is the possibility for a CSRF attack on
the contact.html page and two interesting directories have been found (/custom/ ,
/images/)

Login Credentials
I was checking the /custom/ directory and found a file called users.bak which when

you cat ’d it out a hashed password was shown for the user admin .This password
was hashed with SHA-1, which is easily cracked with CrackStation.Net

Screenshots

/custom/ → Users.bak

https://crackstation.net/

Mustacchio 3

cat users.bak

Hash-identifier

CrackStation

Mustacchio 4

I tried to use those credentials for SSH, but it didn’t work and cited a public key
error. So after poking around for a while I figured that these credentials were going to
go into a login portal I just didn’t know where, so I re-ran nmap , this time scanning for
all the ports (-p) and found port 8765 open with a login portal on it, bingo.

nmap output

Login portal on port 8765

Admin Portal

Mustacchio 5

I played around with the submission portal for a while, unsure of what I needed to
do, but then checking the source code reveals some clues to get progress rolling on.
When checking the source code there is JS code on how portal works, and hints at a
file that can be found at /auth/dontforget.bak . Another is hint is given that the user
Barry can use their key to login to SSH. Which would explain the SSH public key
errors that I had.

Source Code :8765

At first when I read over dontforget.bak , there wasn’t anything of value in it, just a
time waster. However, after messing around with the portal more I realized that an
XML Injection is only possible if the format outline in dontforget.bak is followed.

/auth/dontforget.bak

Output on the admin portal after submitting any text

Mustacchio 6

XML Injection (XXE)
I verified this theory by copy and pasting over the contents from dontforget.bak into

BurpSuite after a normal request was captured. A XML Injection is now possible
because I know how that browser reads XML code and that its unsanitized.

Modified Request

Another way to perform an XXE test is to check if new ENTITY declaration is possible.
I confirmed this by using the browser instead of BurpSuite because it wasn’t reflected
the information correctly.

XML Code

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE foo [<!ENTITY xxe "Injection">]>
<comment>
<name>Works!</name>
<author>&xxe;</author>

https://book.hacktricks.xyz/pentesting-web/xxe-xee-xml-external-entity#new-entity-test

Mustacchio 7

<com>Test</com>
</comment>

Screenshot of new ENTITY check being passed

Once that test was passed, I moved onto checking if there was a LFI vulnerability
that was possible, which there is!

XML Code

Mustacchio 8

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE foo [<!ENTITY xxe SYSTEM "/etc/passwd">]>
<comment>
<name>Works!</name>
<author>&xxe;</author>
<com>Test</com>
</comment>

LFI vuln confirmed

Now that the XXE is confirmed possible, I need to see if I can get Barry 's SSH key
because he is the only user that has SSH capabilities with a provided key. All I need to
do is change the file value from /etc/passwd to /home/barry/.ssh/id_rsa and the SSH
Key is dumped

XML Code

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE foo [<!ENTITY xxe SYSTEM "/home/barry/.ssh/id_rsa">]>
<comment>
<name>Works!</name>
<author>&xxe;</author>
<com>Test</com>
</comment>

SSH Key being dumped.

Mustacchio 9

With the ssh key dumped, I tried to login, but it asked me for a passphrase. To get
this passphrase I used ssh2john.py because it turns SSH private keys into the john
format for cracking.

chmod 600 barry-rsa

python /usr/share/john/ssh2john.py barry-rsa > hash

john hash --wordlist=~/rockyou.txt

Screenshots

barry-rsa file

Mustacchio 10

Terminal Output

Mustacchio 11

🚩User.txt Flag🚩
Now I’m able to SSH into the box as the user barry and from there its a simple ls

command to find the user.txt flag.

ssh -i <rsa-file> barry@$IP

User.txt Flag

🚩Root.txt Flag🚩
At first I was stuck on how to get root on this system, because only one thing

jumped out to, but I didn’t know how to exploit it. However, after some reading and
learning I was able to exploit the needed PATH configuration to become root. I first
noticed that live_log in joe 's directory was already weird, but couldn’t look at the file
to understand what was in it. Once I used the file command I was able to see what
kind of file it was. Its an ELF file and all I needed to do to run it was enter ./live_log .

https://www.quora.com/What-is-the-file-that-has-this-description-setuid-ELF-32-bit-LSB-executable

Mustacchio 12

Which showed me that it was just a live log of the actions being carried out at the
:8765 website.

live_log being ran

The interesting things happen whenever you check for the SUID bits, to see what
things can be ran as root and live_log was on the list, to my surprise. I checked the
file to confirm that it would be ran by the root user, and it is. So all I had to was figure
out how this file could be configured to give me a root shell on the machine.

Using find / -perm /4000 -print 2>/dev/null to check for misconfigured SUID bits

Mustacchio 13

Verifying live_log is ran as the root user

Now to get the root shell I had to turn to another writeup because I wasn’t sure of
how to get the shell to be popped, but once I read through this writeup it made more
sense.

Modifying the PATH configuration for a root shell

https://infosecwriteups.com/tryhackme-writeup-mustacchio-ee526a543d8a

Mustacchio 14

Root Flag

Strings command on live_log

Mustacchio 15

